Module ml4opf.formulations.ed.model
Base class for EconomicDispatch proxy models
Classes
class EDModel-
OPFModelfor EconomicDispatchAncestors
- OPFModel
- abc.ABC
Subclasses
Class variables
var problem : EDProblemvar violation : EDViolation
Methods
def evaluate_model(self, reduction: str | None = None, inner_reduction: str | None = None) ‑> dict[str, torch.Tensor]-
Evaluate the model on the test data.
Args
reduction:str, optional- Reduction method for the metrics. Defaults to None. Must be one of "mean", "sum","max", "none". If specified, each value in the returned dictionary will be a scalar. Otherwise, they are arrays of shape (n_test_samples,)
inner_reduction:str, optional- Reduction method for turning metrics calculated per component to per sample. Defaults to None. Must be one of "mean", "sum","max", "none".
Returns
dict[str, Tensor]-
Dictionary containing Tensor metrics of the model's performance.
pg_lower: Generator lower bound violation.pg_upper: Generator upper bound violation.pf_lower: Branch power flow lower bound violation.pf_upper: Branch power flow upper bound violation.p_balance: Power balance violation.pg_mae: Mean absolute error of the real power generation.obj_mape: Mean absolute percent error of the objective value.
Inherited members
class PerfectEDModel (problem: EDProblem)-
Returns the ground truth, only works with test data.
Ancestors
Methods
def predict(self, pd: torch.Tensor) ‑> dict[str, torch.Tensor]-
Return the ground truth. Only works for
self.problem.test_data.
Inherited members