Module ml4opf.models.basic_nn.acopf_basic_nn
Classes
class ACBasicNN (opfmodel: OPFModel,
slices: list[slice],
optimizer: str = 'adam',
loss: str = 'mse',
hidden_sizes: list[int] = [100, 100],
activation: str = 'relu',
boundrepair: str = 'none',
learning_rate: float = 0.001,
weight_init_seed: int = 42)-
Hooks to be used in LightningModule.
Ancestors
- BasicNN
- pytorch_lightning.core.module.LightningModule
- lightning_fabric.utilities.device_dtype_mixin._DeviceDtypeModuleMixin
- pytorch_lightning.core.mixins.hparams_mixin.HyperparametersMixin
- pytorch_lightning.core.hooks.ModelHooks
- pytorch_lightning.core.hooks.DataHooks
- pytorch_lightning.core.hooks.CheckpointHooks
- torch.nn.modules.module.Module
Subclasses
Class variables
var opfmodel : ACModelvar violation : ACViolation
Instance variables
prop pd_sliceprop pg_sliceprop qd_sliceprop qg_sliceprop va_sliceprop vm_slice
Methods
def add_boundrepair(self, boundrepair: str)def slice_input(self, x: torch.Tensor) ‑> tuple[torch.Tensor, torch.Tensor]def slice_output(self, y: torch.Tensor) ‑> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
Inherited members
class ACBasicNeuralNet (config: dict,
problem: OPFProblem)-
A basic feed-forward neural network.
Args
config:dict- Dictionary containing the model configuration.
optimizer(str): Optimizer. Supported: "adam", "adamw", "sgd".loss(str): Loss function. Supported: "mse", "l1".hidden_sizes(list[int]): List of hidden layer sizes.activation(str): Activation function. Supported: "relu", "tanh", "sigmoid".boundrepair(str): Bound clipping method. Supported: "none", "relu", "clamp", "sigmoid".learning_rate(float): Learning rate.problem:OPFProblem- The OPFProblem object.
Ancestors
- BasicNeuralNet
- ACModel
- OPFModel
- abc.ABC
Subclasses
Class variables
var model : ACBasicNN
Inherited members