Module ml4opf.models.ldf_nn.ldf_nn
Classes
class LDFNN (opfmodel: OPFModel,
slices: list[slice],
optimizer: str = 'adam',
loss: str = 'mse',
hidden_sizes: list[int] = [100, 100],
activation: str = 'relu',
boundrepair: str = 'none',
learning_rate: float = 0.001,
step_size: float = 1e-05,
kickin: int = 0,
update_freq: int = 500,
divide_by_counter: bool = True,
exclude_keys: list[str] = [],
weight_init_seed: int = 42)-
Base class for LDF containing formulation-agnostic methods.
Ancestors
- BasicNN
- pytorch_lightning.core.module.LightningModule
- lightning_fabric.utilities.device_dtype_mixin._DeviceDtypeModuleMixin
- pytorch_lightning.core.mixins.hparams_mixin.HyperparametersMixin
- pytorch_lightning.core.hooks.ModelHooks
- pytorch_lightning.core.hooks.DataHooks
- pytorch_lightning.core.hooks.CheckpointHooks
- torch.nn.modules.module.Module
Subclasses
Class variables
var opfmodel : OPFModel
var violation : OPFViolation
Methods
def on_train_epoch_end(self)
-
Called in the training loop at the very end of the epoch.
To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the :class:
~pytorch_lightning.LightningModule
and access them in this hook:.. code-block:: python
class MyLightningModule(L.LightningModule): def __init__(self): super().__init__() self.training_step_outputs = [] def training_step(self): loss = ... self.training_step_outputs.append(loss) return loss def on_train_epoch_end(self): # do something with all training_step outputs, for example: epoch_mean = torch.stack(self.training_step_outputs).mean() self.log("training_epoch_mean", epoch_mean) # free up the memory self.training_step_outputs.clear()
def on_train_epoch_start(self)
-
Called in the training loop at the very beginning of the epoch.
def set_loss(self, loss)
Inherited members
class LDFNeuralNet (config: dict,
problem: OPFProblem)-
A basic feed-forward neural network.
Args
config
:dict
- Dictionary containing the model configuration.
optimizer
(str): Optimizer. Supported: "adam", "adamw", "sgd".loss
(str): Loss function. Supported: "mse", "l1".hidden_sizes
(list[int]): List of hidden layer sizes.activation
(str): Activation function. Supported: "relu", "tanh", "sigmoid".boundrepair
(str): Bound clipping method. Supported: "none", "relu", "clamp", "sigmoid".learning_rate
(float): Learning rate.problem
:OPFProblem
- The OPFProblem object.
Ancestors
- BasicNeuralNet
- OPFModel
- abc.ABC
Subclasses
Class variables
var model : LDFNN
Inherited members