Module ml4opf.models.penalty_nn.socopf_penalty_nn
Classes
- class SOCPenaltyNN (opfmodel: OPFModel,
 slices: list[slice],
 optimizer: str = 'adam',
 loss: str = 'mse',
 hidden_sizes: list[int] = [100, 100],
 activation: str = 'relu',
 boundrepair: str = 'none',
 learning_rate: float = 0.001,
 exclude_keys: str | list[str] | None = None,
 multipliers: float | dict[str, float] | None = None,
 weight_init_seed: int = 42)
- 
Hooks to be used in LightningModule. Ancestors- PenaltyNN
- SOCBasicNN
- BasicNN
- pytorch_lightning.core.module.LightningModule
- lightning_fabric.utilities.device_dtype_mixin._DeviceDtypeModuleMixin
- pytorch_lightning.core.mixins.hparams_mixin.HyperparametersMixin
- pytorch_lightning.core.hooks.ModelHooks
- pytorch_lightning.core.hooks.DataHooks
- pytorch_lightning.core.hooks.CheckpointHooks
- torch.nn.modules.module.Module
 Class variables- var opfmodel : SOCModel
- var violation : SOCViolation
 Inherited members
- class SOCPenaltyNeuralNet (config: dict,
 problem: OPFProblem)
- 
A basic feed-forward neural network. Args- config:- dict
- Dictionary containing the model configuration.
 optimizer(str): Optimizer. Supported: "adam", "adamw", "sgd".loss(str): Loss function. Supported: "mse", "l1".hidden_sizes(list[int]): List of hidden layer sizes.activation(str): Activation function. Supported: "relu", "tanh", "sigmoid".boundrepair(str): Bound clipping method. Supported: "none", "relu", "clamp", "sigmoid".learning_rate(float): Learning rate.- problem:- OPFProblem
- The OPFProblem object.
 AncestorsClass variables- var model : SOCPenaltyNN
 Inherited members